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a b s t r a c t

This study combines an adaptive mesh redistribution (AMR) method and the space–time conservation
element and solution element (CESE) method to construct a high-resolution scheme for the solution
of electrophoresis pre-concentration and separation problems. In the proposed AMR–CESE scheme, the
fine mesh points are moved toward the regions of discontinuity within the solution domain in accor-
eywords:
soelectric focusing (IEF)
sotachophoresis (ITP)
daptive mesh redistribution (AMR)
ESE method

dance with the equidistribution principle. To reduce the numerical dissipation within the regions of the
solution domain with a large spatial mesh, the spatial component of the CESE scheme is treated using a
Courant–Friedrichs–Lewy (CFL) number insensitive scheme. The validity of the proposed approach is con-
firmed by comparing the results obtained for typical isoelectric focusing (IEF) and isotachophoresis (ITP)
problems with those obtained from the conventional CESE scheme and the finite volume method (FVM),
respectively. It is shown that the AMR–CESE scheme yields a better accuracy than uniform fixed-mesh

n a m
solvers with no more tha

. Introduction

Electrophoretic separation encompasses a variety of well-
stablished techniques for fractionating mixtures of ionic solutes
or analytical and preparative applications. Due to the minia-
ure scale of electrophoretic systems, numerical simulations have
merged as the method of choice for obtaining detailed insights
nto the roles of electro-migration and diffusion in accomplish-
ng a variety of electrophoresis phenomena, including capillary
one electrophoresis (CZE), isotachophoresis (ITP) and isoelectric
ocusing (IEF). However, traditional numerical methods have sev-
ral disadvantages when applied to the analysis of electrophoresis
roblems, including numerical oscillation, dispersion and dissipa-
ion. Accordingly, this study presents an enhanced performance
umerical method in which the space–time conservation ele-
ent and solution element (CESE) method is integrated with an

daptive mesh redistribution (AMR) scheme. The feasibility of
he proposed AMR–CESE scheme is demonstrated by comparing
he simulation results obtained for various ITP and IEF problems
ith those obtained from existing numerical techniques such as

he original CESE method and the finite volume method (FVM),
espectively.
In the ITP process, the sample is injected between two elec-
rolytes, one containing a co-ion with a high mobility and the
ther containing a slower co-ion with a mobility which is lower
han the mobility of the sample ions. During the separation pro-

∗ Corresponding author. Tel.: +886 6 2002724; fax: +886 6 2766549.
E-mail address: rjyang@mail.ncku.edu.tw (R.-J. Yang).
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inor increase in the computational cost.
© 2009 Elsevier B.V. All rights reserved.

cess, the analytes gradually separate into distinct zones under the
effects of an externally applied electric field. In the steady-state
condition, these zones are arranged in order of their respective
mobilities and migrate with the same velocity. An excellent histor-
ical overview of the ITP process is presented by Righetti [1], while
more recent developments in the field are described by Gebauer
et al. [2]. Křivánková et al. [3] presented a comprehensive anal-
ysis of the ITP problem in zone electrophoresis applications with
particular emphasis on the effects of transient ITP mechanisms on
the migration time and separation efficiency, respectively. Shim et
al. [4] utilized a simulation technique to investigate the problems
of ITP stacking and induced pH-junction focusing, respectively.
In general, the results demonstrated the dual stacking mecha-
nism based on transient ITP and induced pH-junction focusing as a
means to increase the concentration sensitivity in capillary elec-
trophoresis. In recent years, researchers have demonstrated the
potential for exploiting ITP to accomplish a variety of operations
in networked microfluidic devices [5]. Various high-resolution
simulators have been presented for analyzing electrophoresis sep-
aration problems, including SIMUL5, developed by Hruška et al. [6]
and available free-of-charge at www.natur.cuni.cz/gas, and the IEF
configuration consisting of 100-carrier ampholytes was first sim-
ulated by Thormann and Mosher [7]. These simulation schemes
suppress numerical oscillations when implemented using a grid
with a sufficiently fine mesh. However, the corresponding increase

in the computational cost is encountered. Yu et al. [8] utilized
the CESE method to model various ITP and zone electrophoresis
(ZE) problems and showed that the solutions were more robust
than those obtained using traditional forward time central space
(FTCS) method and more accurate than those solved by the upwind

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:rjyang@mail.ncku.edu.tw
http://www.natur.cuni.cz/gas
dx.doi.org/10.1016/j.chroma.2009.11.044
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ethod. In a recent study, Bercovici et al. [9] developed an open
ource simulation tool (Spresso, http://microfluidics.stanford.edu)
or analyzing pre-concentration and separation effects in CZE and
TP applications. Besides, it was shown that the compact scheme
ombined with adaptive grid algorithm can reduce much compu-
ational time.

Isoelectric focusing (IEF) is a high-resolution electrophoretic
echnique in which amphoteric biomolecules are separated and
oncentrated at their isoelectric points (pIs) in a pH gradient under
he application of an external electric field. IEF is convention-
lly performed in either an ampholyte solution or an immobilized
H gradient (IPG) gel and has attracted significant attention in
ecent decades due to its wide applicability in a diverse range
f fields, including chemistry, biochemistry and pharmacology.
n excellent review of IEF and its technical aspects is presented
y Silvertand et al. [10]. Many mathematical models have been
roposed for analyzing the IEF problem and other microfluidic
henomena. For example, in 1986, Mosher et al. [11] presented
mathematical model to describe the electrophoretic behavior

f proteins within simple microchannel geometries. In a later
tudy, the authors applied the model to simulate transitional
rotein distributions within a simple buffer mixture under the
ffects of an external electric field [12]. Sounart and Baygents
13] simulated the electrophoretic separation problem using a
ransient 1D electrophoresis model and the flux-corrected trans-
ort (FCT) finite difference method. Chatterjee [14] presented a
eneric unified approach for modeling the transport phenom-
na and chemical behavior of weak, multivalent analytes with
ultiple physics and driving forces. Hruška et al. [6] used a math-

matical model based on the principles of mass conservation,
cid–base equilibria and electro-neutrality to construct a free-
are program (Simul) designed to simulate the movement of ions

n liquid solutions under the effects of an external electric field.
ecently, a 2D finite volume model to simulate non-linear IEF in a
ontraction–expansion channel was developed by Shim et al. [15].
urthermore, Chou and Yang [16] integrated the conventional CESE
ethod with a CFL number insensitive scheme in order to improve

he accuracy of the CESE simulation results obtained for a 1D IEF
roblem in a contraction–expansion channel. Recently, the review
aper by Thormann et al. [17] gives an overview on the dynamic
omputer simulations of electrophoresis including moving bound-
ry electrophoresis, zone electrophoresis, ITP, IEF and EKC.

Adaptive moving mesh methods are widely used in solving a
ariety of scientific and engineering problems in which singular or
early singular solutions are developed dynamically within fairly

ocalized regions of the solution domain. Investigating problems of
his type using numerical methods requires the use of extremely
ne meshes over a small portion of the physical domain in order to
esolve the large solution variations. The successful implementa-
ion of an adaptive mesh strategy not only increases the accuracy
f the numerical approximations, but also reduces the computa-
ional cost by focusing the mesh points in the regions of the solution
omain where they are most required, e.g. regions of the solution
omain corresponding to shock waves, boundary layers, detonation
aves, and so on. The main references of this study follows: Tang

nd Tang [18] developed an adaptive mesh algorithm comprising
wo stages, namely a partial differential equation (PDE) evolution
tage and a mesh redistribution stage. In executing the solution
rocedure, the mesh algorithm was designed to ensure the “mass”
onservation of the underlying numerical solutions each time the
olution domain was remeshed. Huang [19] examined the practical

spects involved in formulating and solving moving mesh partial
ifferential equations (MMPDEs) and described the importance of
efining an appropriate monitor function in order to facilitate an
xplicit control of the mesh concentration. Beckett and Mackenzie
20] had analyzed the convergence properties of various moving
r. A 1217 (2010) 394–404 395

mesh methods and concluded that the grid was suggested by the
equidistribution of a positive monitor function which is a linear
combination of a constant floor and a power of the second deriva-
tive of the solution. Jin and Xu [21] and Tang [22] demonstrated the
feasibility of utilizing adaptive moving mesh methods to solve a
variety of computational fluid dynamics (CFD) problems and other
physical problems, including the two-dimensional viscous flows
and the solution of the shallow-water equations.

The CESE method was originally developed by Chang [23] in
1995 as a means of solving the Navier–Stokes and Euler equations
within the context of CFD and aero-acoustic problems. The over-
riding principle of the CESE method is to ensure flux conservation
at both the local and the global level in the space–time domain.
In the CESE method, both the independent flow variables and their
derivatives are treated as unknowns and are solved simultaneously.
Importantly, there is no need to adjust the artificial dissipation
parameters to match the local solution properties, and hence a uni-
form solution accuracy is assured. These features render the CESE
method an ideal solver for problems characterized by discontin-
uous phenomena or steep gradients, such as combustion systems,
shock waves [24], thermal waves [25], and so on. Due to the explicit
nature of the CESE solution procedure, the CFL number (i.e. the
product of the local velocity and the ratio of the time interval to
the grid size) must be less than unity to ensure the stability of
the numerical solutions. However, for very small CFL numbers (i.e.
CFL < 0.1), the CESE scheme becomes overly dissipative, and hence
the solution procedure fails to converge. To resolve this problem,
Chang [26] developed a CFL number insensitive (CNI)-CESE scheme,
and demonstrated its ability to resolve Sod’s shock tube problem
for CFL numbers ranging from 1 to less than 0.001. Thus, to prevent
the numerical dissipation due to the low CFL number caused some
large value of (�x)j after mesh moving, we established the CFL num-
ber insensitive scheme on the non-uniform mesh to accomplish the
provided AMR–CESE scheme.

In the current study, the AMR–CESE method is proposed to
model the ITP and IEF electrophoretic separation phenomena. The
study commences by formulating a general model for capillary
electrophoretic separation and then presents a detail description
how to combine the CESE scheme and the adaptive mesh method.
Detailed solutions are calculated for the ITP and IEF phenomena
under a variety of initial and operating conditions. The quality of the
AMR–CESE solutions is evaluated via a comparison with the results
obtained under equivalent conditions by original CESE scheme and
FVM.

2. Mathematical model

This section commences by developing a generalized disso-
ciation model for multivalent analytes. A general model for the
transport of ionic and neutral compounds in IEF applications is then
derived.

2.1. Generalized dissociation model for multivalent analytes

For a general analyte A with n dissociable protons, a total of
n dissociation reactions may take place. (Note that the details of
these dissociation reactions and the corresponding parameters are
presented in [14] and are therefore omitted here). In general, the
degree of dissociation of an ionic state containing j dissociable pro-
tons Ai is defined as

+ −(n−i)∏n−i

˛i =

Ci
C

= [H ] l=1Kl

1 +
∑n

j=1[H+]−j
∏j
l=1Kl

, i /= n,

˛i =
1

1 +
∑n

j=1[H+]−i
∏i
l=1Kl

, i = n,
(1)

http://microfluidics.stanford.edu/
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here C denotes the overall concentration of analyte A, Ci indi-
ates the concentration of analyte Ai, and Kl is the equilibrium rate
onstant.

As discussed in [14], the charge and mobility parameters of an
nalyte can be derived by treating the ensemble of all the states
s a single entity governed by effective parameters rather than by
reating each ionic state as a separate variable. The effective charge,
eff, and effective mobility, ωeff, of a multivalent analyte can be
xpressed, respectively, as

eff =
n∑
i=0

(�− i)˛n−i, (2)

here � is the net charge of the analyte when possessing all n
issociable protons, and

eff = 1
Zeff

n∑
i=0

(�− i)ωi˛i, (3)

here ωi is the mobility of ionic state Ai.

.2. General transport model

A general set of balance laws governing the transport of ionic and
eutral compounds in isothermal electrophoretic separations will
e introduced in this section. The basic governing equation for the
ransport of an ionic compound in an isothermal electrophoretic
eparation can be formulated in terms of the following mass flux
onservation equation:

∂C

∂t
= −∇ · ( �UC + �VeC − D∇C), (4)

here �U is the bulk flow velocity; �Ve is the electrophoretic veloc-
ty, i.e. �Ve = Zeffωeff

�El , where �El is the intensity of the local electric
eld; and D is the diffusion coefficient, i.e. D = RTωeff/F from the
ernst–Einstein equation, where R is the gas constant, T is the abso-

ute temperature and F is the Faraday constant [27]. In deriving a
implified 1D transport model, the EOF (electroosmotic flow) is not
ccounted. Consequently, electrokinetic flow does not take place
28,29]. In the absence of a bulk flow (such as that induced by an
xternal pressure force, for example), Eq. (4) reduces to

∂C

∂t
= − ∂

∂x

(
VeC − D∂C

∂x

)
. (5)

It is well known that hydrogen ions play an essential role in all
issociation reactions which produce or consume protons, e.g. the
issociation of water to create a hydroxyl ion and a hydrogen ion.
urthermore, the pH of a solution can be determined from the net
eutrality assumption, i.e.

H+] − KW

[H+]
+

N∑
i=1

(Zeff)iCi = 0, (6)

here [H+] is the concentration of the hydrogen ions and Kw is the
issociation constant of water. (Note that the actual pH value is
btained by applying the Newton–Raphson method to determine
he root of Eq. (6)).

In an electrophoretic separation process, the migration velocity
aries as a function of the strength of the local electric field �El, which
n turn depends on the conductivity � of the species, i.e.[

N
]

= F [H+]ωH + KW

[H+]
ωOH +

∑
i=1

(Z2
eff)(ωeff)iCi , (7)

here ωH and ωOH are the mobilities of the hydrogen ions and the
ydroxide ions, respectively. According to the modified Ohm’s law,
Fig. 1. Flowchart showing the implementation of proposed AMR–CESE scheme.

the local electric field strength is related to the current density �I
and conductivity � via the following formulation [6]:

�El =
�I

�
− F

�

[
−DH

∂CH

∂x
+ DOH

∂COH

∂x
−

N∑
i=1

(zeff)iDi
∂Ci
∂x

]
, (8)

where DH and DOH are the diffusion coefficients of hydrogen and
hydroxide ions, respectively. The second term on the right-hand
side accounts for the diffusion potential rising due to differential
diffusion of dissimilar ionic species of constituents. And thus the
migration velocity can be derived as �Ve = (ωeff)�El.

3. Numerical implementation

As discussed in Section 1, this paper proposes an adaptive
mesh redistribution CESE (AMR–CESE) scheme for obtaining high-

resolution solutions for electrophoretic separation problems in a
computationally efficient manner. Fig. 1 presents a flowchart show-
ing the application of the AMR–CESE scheme to the simplified 1D
transport equation described in Section 2.2. As shown, the solu-
tion procedure commences by assigning a suitable set of initial
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onditions (e.g. the grid size, the distributions of analytes, param-
ters of each analytes and the value of applied voltage). The grid
esh is then adjusted in such a way as to increase the resolution
ithin the regions of interest within the solution domain by solv-

ng the mesh equation (Eq. (18)) and the solution is updated on
he new mesh using an appropriate solution-update formulation
Eq. (22)). The Newton–Raphson iteration method is then applied
o solve the charge conservation equation given in Eq. (6) in order
o determine the [H+] distribution resulting from the ionic associa-
ion/dissociation process. Subsequently, Eq. (7) is solved to obtain
he local conductivity (�), which is then integrated over the channel
o establish the total resistance. Given a knowledge of the applied
oltage, �E, the current density �I within the channel is then com-
uted in accordance with modified Ohm’s law. Thereafter, the local
lectric field strength and mobility velocity are derived using the Eq.
8), and �Ve = (ωeff)�El, respectively. Having determined the values
f all these parameters, the 1D transport equation is solved for the
ext time step The solution procedure continues iteratively in this
ay until the specified termination of physical time is achieved sat-

sfied, at which point the solutions for the concentrations, pH profile
nd conductivity distribution within the channel are obtained.

The following sections review two of the fundamental mecha-
isms embedded within the proposed AMR–CESE scheme, namely
he non-uniform mesh CESE scheme and the CFL number insensi-
ive CESE scheme.

.1. Non-uniform mesh CESE scheme

In moving mesh methods, the action of moving the grid points to
he regions of interest within the solution domain has the effect of
roducing a non-uniform mesh system. Thus, this section provides
simple method for implementing the CESE algorithm utilizing a
on-uniform mesh in such a way that flux conservation is main-
ained at both the local and the global level.

The 1D IEF transport model for the ith species given in Eq. (5)
an be expressed in the following matrix form:

∂U

∂t
+ ∂E

∂x
= 0, (9)

here U = Ci and E = (Ve,iCi−Di(∂Ci/∂x)).
Let �1 = t and �2 = x be the coordinates of a two-dimensional

uclidean space E2. Applying the Gaussian divergence theorem in
2, the differential form of Eq. (9) can be transformed into the fol-
owing integral conservation form:

S(V)

�h · d�s = 0, (10)

here �h = (E,U) and S(V) is the boundary of an arbitrary
pace–time region V in E2.

As shown in Fig. 2(a), in the CESE scheme, the Euclidean space E2
s partitioned into a non-uniform array of non-overlapping rectan-
ular regions referred to as conservation elements (CEs). Fig. 2(b)
resents a detailed view of an arbitrarily chosen conservation ele-
ent CE(j, n), in which the midpoint of the upper surface is located

t mesh point (j, n). Finally, let the solution element SE (j, n) be
he interior of the space–time region bounded by a dashed curve
epicted in Fig. 2(c). It includes a horizontal line segment, a verti-

al segment and their immediate neighborhood. Consequently, the
oundary of CE(j, n) is a subset of the union of solution elements
SEs) (j, n), (j − 1/2, n − 1/2) and (j + 1/2, n − 1/2), respectively.

For any (x,t) ∈ SE(j, n), let U, E and �hbe approximated by U*, E*and
�∗, respectively, with the following first-order Taylor’s expansion
Fig. 2. Discretization of non-uniform AMR–CESE scheme in space–time domain: (a)
space–time mesh; (b) conservation element (CE) of node (n, j); (c) solution element
(SE) of node (n, j).

forms:

U∗(x, t; j, n) = (U)nj + (x − xj)(Ux)nj + (t − tn)(Ut)
n
j ,

E∗(x, t; j, n) = (E)nj + (x − xj)(Ex)nj + (t − tn)(Et)
n
j ,

�h∗(x, t; j, n) = (U∗(x, t; j, n), E∗(x, t; j, n)).
(11)

From Eq. (9), it can be seen that E is a function of U and Ut = −Ex.
Consequently, Ut is a function of both U and Ux. In other words,
the only independent discrete variables to be solved in the CESE
marching scheme are (U)nj and (Ux)

n
j , respectively.

Combining Eqs. (9)–(11), it can be shown that

(�x)j(U)nj = (�x)j,L
2

[
(U)n−1/2

j−1/2 + (�x)j,L
4

(Ux)
n−1/2
j−1/2

]

+ (�t)n

2

[
(E)n−1/2

j−1/2 + (�t)n

4
(Et)

n−1/2
j−1/2

]

(�t)j,R
[

n−1/2 (�x)j,R n−1/2
]

+
2

(U)
j+1/2 −

4
(Ux)j+1/2

− (�t)n

2

[
(E)n−1/2

j+1/2 + (�t)n

4
(Et)

n−1/2
j+1/2

]
. (12)
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ig. 3. Definition of points P− and P+ in CE when using CFL number
nsensitive scheme with non-uniform mesh. Note that �xs=(1 − |	 |)(�x)j/4,

xc=(1 + |	 |)(�x)j/4.

Referring to Fig. 2(b), the term on the LHS of Eq. (12) gives the flux
f �hm across the upper surface of CE(j, n), while the first and second
erms on the RHS of Eq. (12) represent the fluxes of �hm across the
ower and left surfaces of CE(j, n), respectively, about point (j − 1/2,
− 1/2). Finally, the third and fourth terms denote the fluxes of �hm
cross the lower and right surfaces of CE(j, n), respectively, about
oint (j + 1/2, n − 1/2). Note that here the solved (U)nj is located at
oint C’ (i.e. the center of line segment AB) in Fig. 2(b).

.2. CFL number insensitive CESE scheme

The conventional CESE scheme is a simple explicit method
nd provides a high-resolution performance when analyzing sharp
ariations in the solution domain. In implementing the CESE
ethod, the CFL number should be assigned a value of ≤1 while

he diffusion number (i.e. D(�t)n/(�x)2
j ) should have a value of

0.5 in order to suppress numerical oscillations [23]. However, at
ery small values of the CFL and diffusion numbers, e.g. <0.01 and
0.05, respectively, the CESE scheme becomes overly dissipative. In
he electrophoresis separation problems considered in the present
imulations, the migration velocities of the analytes vary signif-
cantly as a result of the steep distribution of the initial electric
eld. Additionally moving mesh may cause large spatial intervals.
onsequently, the local CFL number also varies over a large range,
nd may therefore result in numerical dissipation. In this study, the
ffects of numerical dissipation are suppressed by utilizing the CFL
umber insensitive CESE (CNI-CESE) scheme proposed by Chang
26].

The CNI-CESE scheme is constructed simply to solve special
ifferential term (Ux)

n
j to take account of the CFL number effect.

ote that hereafter, the CFL number is denoted simply as (i.e.
= Ve(�t)n/(�x)j). Let P− and P+ be defined as the points indicated

n Fig. 3. Furthermore, let U′(P±) be a first-order Taylor’s approxi-
ation of U at point P± evaluated using the marching variables at

j ± 1/2, n − 1/2), i.e.

′(P±) = (U)n−1/2
j±1/2 + (�t)n

2
(Ut)

n−1/2
j±1/2 ∓ (1 − |	 |(�x)j)

4
(Ux)

n−1/2
j±1/2 .

(13)

he spatial derivatives (Ûx±)
n
j between (j, n) and P± can be defined

s

Ûx±)
n
j = ±

U ′(P±) − (U)nj
(1 + |	 |)(�x)j/4

. (14)

inally, the spatial differential term (Ux)
n
j at point C′ can be calcu-

ated in accordance with

Ux)
n
j =

[1 + (s−)nj ]
ˇ

(Ûx)
n
j + [1 + (s+)nj ]

ˇ
(Ûx−)

n
j

n ˇ n ˇ
, (15)
[1 + (s−)j ] + [1 + (s+)j ]

here (s±)nj
def= (|(Û+

x±)
n

j |/min(|(Û+
x+)

n

j |, |(Û+
x−)

n

j |)) − 1 ≥ 0.

Eqs. (12) and (15) yield the variables (U)nj and (Ux)
n
j at point C′.

owever, before repeating the solution procedure at the next time
r. A 1217 (2010) 394–404

step, it is first necessary to determine the corresponding solutions
at point C (see Fig. 2(b)). Solution U is linearly distributed in the SE
domain due to the use of a first-order Taylor series expansion, and
thus the following formulation can be derived:

(U)C = (U)C′ + (XC − XC′ )(Ux)C′ ,
(Ux)C = (Ux)C′ .

(16)

4. Adaptive moving mesh method

The moving mesh method employed in this study was origi-
nally proposed by Tang [18], and can be summarized as follows.
(a) Apply a uniform spatial grid on which the approximated solu-
tions exist at the center points of the line segments. (b) Solve the
mesh equation (see Eq. (18), below) to redistribute the grids in such
a way as to increase the resolution near the critical points within
the solution domain. (c) Update the approximate solutions on the
new grid system using the high-resolution conservation interpo-
lation formula (see Eq. (22), below). (d) Utilize the non-uniform
CESE method in the physical domain to compute the solution to
the governing equations as a function of physical time.

4.1. Adaptive mesh redistribution

In accordance with the method presented in [18], the adaptive
moving mesh is generated by transforming the uniform mesh in the
computational domain˝c to a cluster of grid points in the regions
of the physical domain ˝p characterized by solutions with large
gradients. The mesh map is generated by minimizing the following
function:

E(
) = 1
2

∫
˝p

˚−1(
x)
2dx, (17)

where x and
denotes the physical and computational coordinates,
respectively, ˚ is called the monitor function. And the employed
monitor function will be introduced in Section 4.3. In practice, we
derive the moving mesh by solving the conventional equidistri-
bution principle: ˚x
 = constant, or (˚x
)
 = 0 [18]. After utilizing
central difference approximations we can obtain the moving mesh
equation as:

X[�+1]
j

=
˚(u[�]

j−1/2)X[�+1]
j−1 +˚(u[�]

j+1/2)X[�]
j+1

˚(u[�]
j−1/2) +˚(u[�]

j+1/2)
, (18)

where uj+1/2 represents the cell-averaged value of solution u(x)
over the region [xj, xj+1] and � denotes the number of iterations.
The discrete system given in (18) can be solved with the Dirichlet
boundary condition using an explicit iteration method such as the
Gauss–Seidel scheme.

During the solution procedure, the mesh movement is
controlled using a standard gradient-based monitor function. How-
ever, in place of the conventional arc length-type monitor function,
this study utilizes the more sophisticated monitor function pro-
posed by Beckett and Mackenzie [20] in order to overcome the
problem that some of the parameters used to control the moni-
tor function are problem dependent. van Dam and Zegeling [30]
showed that this particular monitor function provides an excellent
tracking performance for both small, local phenomena and large

shocks within the same solution domain As a result, it provides an
ideal means of controlling the mesh movement in the IEF and ITP
problems considered in this study. Consider a solution-dependent
floor value (U), where (U) is defined as the average value of the
solution gradient contained function, and the monitor function is
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efined as:

(U) =
m∑
p=1

[
(1 − �) p(U) + �

∣∣∣∣∂Up

∂


∣∣∣∣
]
, (19)

here m is the number of variables, and  p is derived as

p(U) =
∫
˝c

∣∣∣∣∂Up

∂


∣∣∣∣
1/2

d
. (20)

In theory, parameter � in Eq. (19) can be varied by the user in
ccordance with solution gradients. However, in a series of pre-
iminary investigations, it was found that a value of � = 0.8 yielded
cceptable results for a range of electrophoresis problems, and thus
ts value was specified as a constant � = 0.8 in all the simulations
erformed in this study. (Note that a detailed investigation into the
etting and effects of � is available in [19].)

In moving mesh methods, some form of temporal or spatial
moothing is generally applied to the monitor function in order
o smooth the obtained meshes, thereby avoiding the generation of
ighly singular meshes and suppressing large approximation errors

n the regions of the solution domain characterized by large gradi-
nts. In this study, the monitor function was smoothed using the
ollowing formulation:

smooth
j+1/2 = 1

16
(˚j−3/2 + 3˚j−1/2 + 8˚j+1/2 + 3˚j+3/2 +˚j+5/2). (21)

here˚j+1/2 represents˚(xj+1/2).

.2. Solution updating on new mesh

For convenience, let xj and x̃j be the coordinates of the old mesh
nd the new mesh, respectively. In other words, grid point xj in the
riginal mesh is moved to position x̃j in the new mesh after solving
he mesh equation given in (18). As a result, the solution U must be
pdated to reflect the change in the grid point positions. Tang [18]
howed that the update procedure could be performed using the
ollowing perturbation-based conservation interpolation formula:

˜ j+1/2 = (xj+1 − xj)Uj+1/2 − [(QU)j+1 − (QU)j])
x̃j+1 − x̃j

, (22)

here Ũ is the solution on the new mesh, Q (x) ≡ x − x̃ represents
small displacement between the old and new meshes, and (QU)

s the approximated numerical flux.

.3. Adaptive time interval of CESE method

As described above, the grid points are moved to a new posi-
ion in accordance with Eq. (18) and the solutions for the species
oncentration are then updated using Eq. (22). Simultaneously, the
olutions for the conductivity �, local electrical field, and elec-
rophoretic velocities of the various analytes are then computed
or the new mesh. Applying the constraint conditions which guar-
ntee the stability of the CESE solver solutions (i.e. a CFL number
f ≤1 and a diffusion number of ≤0.5), the time-step interval �t
or the following simulation time step is determined in accordance
ith

�t)n = min

{(
�x

Ve,i

)
j

,

(
1
2
�x2

Di

)
j

}
, 1 ≤ j ≤ N. (23)
. Results and discussion

This section evaluates the performance of the proposed
MR–CESE scheme when applied to the solution of three classical
lectrophoresis separation problems. The simulations commence
r. A 1217 (2010) 394–404 399

by considering the ITP separation problem in which a mixture of
two samples is separated under the effects of a Coulomb force and
the two samples then migrate with a constant velocity. The simu-
lations then consider the concentration of a single sample via the
IEF effect induced by IPG. Finally, the simulations consider the iso-
electric focusing of a sample within 10 background ampholytes.
In conducting the simulations, the performance of the proposed
AMR–CESE scheme is benchmarked against that of two fixed-grid
solvers, namely the original CESE method and FVM. In every case,
the simulations are performed on an XP-based computer (Intel I
CoreI2 Duo CPU, 2.67 GHz, 2GB RAM).

5.1. Isotachophoresis (ITP) separation

In the ITP simulations, the leading electrolyte (LE) was com-
posed of 18 mM sodium hydroxide (ω = 5.19 × 10−9 m2/Vs) and
20 mM acetic acid (pK = 4.75, ω = 4.24 × 10−9 m2/Vs), while the
terminating electrolyte (TE) and background electrolyte were
assumed to be 40 mM �-alanine (pK = 3.3, ω = 3.6 × 10−8 m2/Vs)
and 20 mM acetic acid, respectively. Finally, the sample comprised
a mixture of aniline and pyridine, and was introduced into the
4 cm long capillary channel in 1 mm long plugs with a concentra-
tion of 10 mM. The separation process was achieved by applying
a current density of 2260 A/m2 along the length of the capillary
channel, resulting in the formation of a discontinuous electrical
driving force on the two components within the sample. Since the
different components within the sample have different mobility
characteristics, they migrate at different velocities, and therefore
start to separate. To avoid the disruption of electric circuit occur, the
same velocity of all electrolyte were exhibited in the steady state.
Fig. 4(a) presents the results obtained by the AMR–CESE scheme
with 401 grids at time t = 30 min for the steady-state concentration
profiles of the TE, LE, background electrolyte and sample compo-
nents, respectively. The corresponding time-based variation of the
time-step interval (�t) is illustrated in Fig. 5(a), while the mesh
history is presented in Fig. 5(b). The results presented in Fig. 5(b)
confirm that the AMR scheme leads to a clustering of the grid points
within specific regions of the solution domain. The concentration
of the grid points improves the resolution of the solutions in the
regions of the solution domain characterized by abrupt changes in
the concentration profiles of the electrolytes or the sample com-
ponents. Thus, as shown in Fig. 4(b), the results obtained using
the AMR–CESE scheme with 401 grids are comparable to those
obtained using the conventional CESE scheme with 2001 grids. In
addition, it is observed that the conventional CESE method and
the FVM method with first-order upwind scheme treating the con-
vection term both fail to predict the concentration profiles of the
two samples correctly when implemented using 401 uniform grids
due to the severe numerical dissipation induced at the bound-
ary between the samples. Fig. 6(a) compares the results obtained
using the AMR–CESE scheme and other numerical schemes, respec-
tively, for the variation of the boundary thickness between the
pyridine and aniline zones as a function of the number of grid
points. Note that the boundary thickness is defined here as the
distance over which the concentration changes from 1% to 99%
of its plateau value, both schemes show that the predicted value
of the boundary thickness reduces with an increasing number of
grid points. In addition, for a constant number of grid points, the
boundary thickness predicted by the AMR–CESE scheme is lower
than that predicted by the original CESE scheme. In other words,
the AMR–CESE scheme has an improved resolution. The figure

also shows Bercovici’s results are superior to others, while both
AMR–CESE and Sounart’s solutions are comparable. Although the
accuracy of Bercovici’s solver is higher than AMR–CESE scheme in
ITP case, this work presents further applications of the AMR–CESE
to IEF problems which Bercovici’s did not carry out. Finally, Fig. 6(b)
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Table 1
Initial properties of acid, base and Histidine sample used in IEF IPG simulations.

Name Concentration Valence pK Mobility (10−9), m2/Vs

Cacodylic acid (CACO) 40 (mM) (x = 0 cm) ∼ 20 (mM) (x = 1 cm), linear distribution −1 6.184 0
ear di

c
s
o
o
t
m
H
a
a
t
s
a

F
l
e
u

Tris-aminomethane (TRIS) 20 (mM) (x = 0 cm) ∼ 40 (mM) (x = 1 cm), lin

Histidine (HIS)
1 (mM) uniform
distribution (t = 0 s)

ompares the consumed CPU times of the AMR–CESE and CESE
chemes in solving the ITP problem as a function of the number
f grid points. In general, the results show that for a given number
f grid points, the CPU time of the AMR–CESE scheme is around
wice that of the conventional CESE scheme due to the require-

ent to adjust the mesh adaptively during the solution procedure.
owever, as shown in Fig. 4(b), the AMR–CESE scheme provides the

bility to obtain high-resolution insights into the ITP problem with
significantly lower number of grid points than that required by

he CESE scheme. Thus, in practice, the CPU time of the AMR–CESE
cheme is actually lower than that of the CESE method for an equiv-
lent resolution.

ig. 4. Simulation results for ITP problem: (a) concentration distribution of all ana-
ytes at t = 30 min with 401 grids; (b) comparison of AMR–CESE solution with those of
xisting numerical methods. Note that the solid line indicates the solutions obtained
sing the original CESE method with a fine grid resolution (2001 grids).
stribution +1 8.076 0

−1 9.17 20.2
+1 6.04 20.2

5.2. Isoelectric focusing (IEF) by IPG

The second set of simulations considered the isoelectric focus-
ing of an ampholyte sample within a straight channel of length 1 cm
under the effects of an immobilized pH gradient. The simulations
considered Histidine as the sample and created an immobilized pH
gradient by carefully controlling the distribution of the buffer con-
stituents, namely Cacodylic acid (CACO) and Tris-aminomethane
(TRIS). In order to maintain an immobilized pH gradient, the mobil-
ities of the buffer constituents were specified as zero and an

assumption was made that the IEF process took place in the absence
of a bulk flow. Table 1 summarizes the initial conditions considered
in the simulations. As shown, the CACO and TRIS were linearly dis-
tributed along the length of the channel, while the Histidine sample
(1 mM) was uniformly distributed. In each simulation, a current

Fig. 5. Time-step and mesh variation in ITP simulation utilizing AMR–CESE scheme
with 401 grids: (a) variation of selected time-step interval (�t) over time and (b)
mesh history.
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Fig. 6. Comparison of AMR–CESE results and original CESE results for ITP simulation:
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Fig. 7. Concentration evolution of Histidine in IEF IPG problem when solved by
AMR–CESE scheme with 51 grids.
a) variation of predicted boundary thickness between pyridine and aniline zones for
arious relevant numerical schemes as function of number of grids and (b) variation
f consumed CPU time to achieve solution at t = 30 min as function of number of
rids.

ensity of 0.2 A/m2 was applied along the length of the channel,
ausing the sample to move gradually toward its pI location (i.e.
he point of zero net Coulomb force).

Fig. 7 presents the time-based variation of the Histidine con-
entration profile for the case in which the IEF in IPG problem was
olved by the AMR–CESE scheme with 51 grids (i.e. an initial grid
ize �x = 0.02 cm).It can be observed that the shape of concentra-
ion profile is maintained since the balance between diffusion effect
nd the Coulomb force at about 200 min. Fig. 8(b) shows the varia-
ion of the time-step interval (�t) over time when solving the IEF
PG problem utilizing the AMR–CESE scheme with 51 grids. Mean-

hile, Fig. 8(a) illustrates the corresponding mesh history. As the
istidine sample approaches the pI location and attains steady-

tate conditions, its migration velocity reduces to zero. Thus, the
ime-step interval�t reduces to a constant value of approximately
.22 (s) (see Fig. 8(a)), and the mesh positions are no longer adjusted

see Fig. 8(b)). Fig. 9(a) and (b) compares the results obtained by the
MR–CESE scheme, the original CESE method and the FVM meth-
ds, respectively, for the concentration and conductivity profiles
ithin the channel after t = 200 min. It can be seen that in both
gures, the resolution of the results obtained using the AMR–CESE

Fig. 8. Time-step and mesh variation in IEF IPG simulation when using AMR–CESE
scheme with 51 grids: (a) mesh history and (b) variation of time-step interval (�t)
over time.
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confirm the ability of the AMR–CESE scheme to drive the mesh
points toward the regions of discontinuity in the solution domain.
Fig. 13(a) compares the sample concentration profile obtained by
the AMR–CESE method with 201 grids with the profiles obtained

Table 2
Properties of 10 ampholytes and 1 sample.

Analyte pK1 pK2 pI Concentration,
mol/m3

Mobility m2/Vs

Ampholyte 1 6.01 6.41 6.21 0.16 3.0E−8
Ampholyte 2 6.25 6.65 6.45 0.16 3.0E−8
Ampholyte 3 6.47 6.87 6.67 0.16 3.0E−8
Ampholyte 4 6.71 7.11 6.91 0.16 3.0E−8
Ampholyte 5 6.94 7.34 7.14 0.16 3.0E−8
Ampholyte 6 7.17 7.57 7.37 0.16 3.0E−8
Ampholyte 7 7.51 7.91 7.71 0.16 3.0E−8
Ampholyte 8 7.64 8.04 7.84 0.16 3.0E−8
ig. 9. Comparison of AMR–CESE solutions for IEF IPG problem at t = 200 min with
ESE and FVM solutions: (a) Histidine concentration and (b) conductivity (�).

ethod with 51 grids is equivalent to that of the solutions obtained
rom the conventional CESE method with 510 grids. By contrast, the
esults obtained using the FVM method with 51 uniform grids show
lear evidence of numerical dissipation.

The accuracy of the concentration results obtained by the var-
ous simulation methods can be quantified using the following
iscrete L1-norm error:

1-norm error(N) = 1
N

N∑
i=1

|Ci − Cf,i| (24)

here N is the total number of mesh grids in the computational
omain and |Ci − Cf,i| is the difference in the sample concentration
alues obtained at position xi when using a coarse mesh and a
ne mesh, respectively. Fig. 10 shows the L1-norm errors of the
MR–CESE and FVM solutions for the Histidine concentration at

imes t = 20, t = 40 and t = 200 min, respectively. Note that N = 51

n every case. The results show that the error of the AMR–CESE
olutions is less than one half that of the FVM solutions at each con-
idered time point. In other words, the accuracy of the AMR–CESE
ethod is confirmed.
Fig. 10. Comparison of L1-norm errors of AMR–CESE and FVM schemes with 51
grids when solving IEF IPG problem.

5.3. Isoelectric focusing (IEF) of sample within 10 background
ampholytes

The final set of simulations considered the focusing of a single
ampholyte sample in an ampholyte-based pH gradient produced by
10 components. The properties of the 10 ampholytes and the sin-
gle sample are summarized in Table 2 and are consistent with those
considered in [15]. The simulations assumed the IEF process to take
place within a planar channel of length 1 cm under the effects of
an external electric field with an intensity of 300 V/cm. The ini-
tial grid interval within the AMR–CESE scheme was specified as
�x = 5 × 10−2 cm, giving a total of 201 grids.

As shown in Fig. 11, the sample is concentrated within a sin-
gle focused band located at x = 0.5 cm (i.e. the midpoint position of
the channel) after 30 s. From inspection, the concentration of the
focused protein sample (1.5 mM) is found to be around 90 times
higher than the initial concentration (i.e. ∼0.16 mM, see Table 2).
Fig. 12(a) and (b) illustrates the evolution of the time-step inter-
val �t and the adaptive mesh over time, respectively. Fig. 12(a)
confirms that the time-step interval converges to a constant value
under steady-state conditions. Moreover, Fig. 12(b) shows that the
mesh points are clustered in the vicinity of the interfaces between
the adjacent ampholytes within the channel and finally the mesh
structure does not change substantially. In other words, the results
Ampholyte 9 7.87 8.27 8.07 0.16 3.0E−8
Ampholyte 10 8.10 8.50 8.30 0.16 3.0E−8

Sample 7.00 7.60 7.30 0.16 3.0E−8
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Fig. 11. Concentration profiles of sample and 10 ampholytes after t = 30 s in IEF
problem solved using AMR–CESE scheme.

Fig. 12. Time-step and mesh variation in IEF simulation for sample and 10 back-
ground ampholytes using AMR–CESE scheme with 201 grids: (a) variation of
time-step interval (�t) over time and (b) mesh history.
Fig. 13. Comparison of AMR–CESE solutions at t = 30 s for IEF problem with sample
and 10 background ampholytes with solutions obtained from original CESE method
and FVM method: (a) sample concentration and (b) pH profile.

by the conventional CESE method with 201 and 1001 grids, respec-
tively, and the FVM method with 201 grids. It is observed that the
resolution of the results obtained using the AMR–CESE method with
a coarse mesh of 201 grids is equivalent to that obtained using the
conventional CESE scheme with a fine mesh of 1001 grids. How-
ever, the results obtained from the CESE and FVM methods with
a coarse mesh of 201 grids show evidence of numerical dissipa-
tion. Fig. 13(b) compares the results obtained from the AMR–CESE
scheme and the conventional CESE scheme for the step-like dis-
tribution of the pH along the channel length under steady-state
conditions. Note that both schemes are implemented using a coarse
mesh of 201 grids. Comparing the two profiles, it is seen that
the AMR–CESE method more accurately captures the points of
discontinuity between the adjacent ampholytes. In other words,
the AMR–CESE profile has a well-defined step-like characteris-
tic, whereas the CESE method tends to smooth the pH boundary
between the adjacent ampholytes. Finally, Fig. 14 compares the
L1-errors of the concentration results obtained by the AMR–CESE
scheme, the conventional CESE method and the FVM method at

times of t = 10 s and t = 30 s, respectively. Note that in every case the
schemes are implemented using a mesh with 201 grids. The results
once again demonstrate the superior accuracy of the AMR–CESE
scheme.
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ig. 14. Comparison of L1-norm errors of AMR–CESE scheme, original CESE method
nd FVM method when solving IEF problem with sample and 10 background
mpholytes. Note that in each case, the schemes are implemented using a mesh
ith 201 grids.

. Concluding remarks

This paper has proposed an adaptive mesh redistribution CESE
AMR–CESE) scheme based upon a moving mesh technique and
he non-uniform mesh CESE method for the solution of general
lectrophoresis separation problems. To overcome the numeri-
al dissipation problem induced by the very low CFL numbers
aused by large local values of �x in the non-uniform mesh, the
patial term in the CESE scheme has been treated using a CFL num-
er insensitive method. The validity of the proposed AMR–CESE
cheme has been confirmed by solving several classical elec-
rophoresis separation problems, namely isotachophoresis (ITP),
soelectric focusing (IEF) in an immobilized pH gradient (IPG), and

EF of a sample within 10 background ampholytes. The results have
hown that the AMR–CESE scheme successfully resolves the points
f discontinuity in the concentration distributions in the ITP and
mpholyte-based pH gradient IEF problems. In addition, for a given
esolution, the proposed method yields a significant reduction in

[
[
[
[
[
[
[
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the number of grid points compared to uniform mesh methods.
Overall, the results show that the AMR–CESE scheme is an ideal
numerical solver for problems in which the solutions are highly
singular within fairly localized regions.
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